

Jet Propulsion Laboratory California Institute of Technology

Mars Cube One

John D. Baker

26 September 2017 Jet Propulsion Laboratory California Institute of Technology

Copyright 2017 California Institute of Technology. Government sponsorship acknowledged.

<u>Trajectory</u> Large free-space path loss Spacecraft dynamics effects

<u>Navigation</u> Outside GPS signal range No Earth's magnetic fields

Environment High ionizing radiation Clock stability over mission duration

*IMAGES NOT TO SCALE

<u>Trajectory</u> Large free-space path loss Spacecraft dynamics effects

Large aperture antennas Low receiver sensitivity

Environment High ionizing radiation Clock stability over mission duration

Space-grade parts Coherent Transponder

An equally capable ground station to support deep-space exploration needs is required.

*IMAGES NOT TO SCALE

Iris Deep-Space Transponder

Iric 1/2 1

- CubeSat/SmallSat compatible deep-space transponder
- ~0.5U volume (100.5 x 101.0 x 56.0 mm; transponder only)
- DSN/NEN-compatible X-band uplink/downlink (7.2GHz/8.4GHz)
- Software Defined Radio with Leon3-FT softcore processor
- Provides navigational support (Doppler, Ranging, DDOR)

Iric V1 0

• Modular hardware design for other frequency bands (UHF, Sband, Ka-band)

Iris Specification	Units	for INSPIRE	for MarCO	for SLS EM-1
Mass	grams	450 (no chassis)	1210 (w/ UHF-Rx)	< 1000 (X/X-only)
Volume	U	0.46	0.77 (w/ UHF-Rx)	0.56
Bus Input Voltage	Vdc	6.4 - 8.4	10.5 – 12.3	9.0 - 28.0
DC Power*	W	13.0	35.0	33.7
RF Output Power*	W	0.15	3.3	3.8
Receiver Noise Figure	dB	5.0 - 6.0	3.5	3.5
Receiver Sensitivity	dBm	-135 @ 70Hz LBW	-139 @ 70Hz LBW	-151 @ 20Hz LBW
Uplink Data Rate ⁺	bps	1,000	62.5 & 1,000	62.5 – 8,000
Downlink Data Rate ⁺	bps	62.5 - 64,000	62.5 & 1,000 & 8,000	62.5 – 256,000
Telemetry Encoding		Conv & Reed Solomon	Turbo-1/6 only	Conv, Reed Solomon, Turbo 1/2, 1/3, 1/6
Radiation Tolerance	krads	N/A	15.0 TID	23.0 TID
S/C Interface		1 MHz SPI	1 MHz SPI	1 MHz SPI

* Nominal at ambient

+ Subject to link margin

MarCO Objectives:

- Launch with Insight May 2018
- Demo deep space comm and nav capability for SmallSats
- Attempt 8kbps real-time relay during Insight EDL

X-Band 8 kbps

To Earth

Mars

Entry, Descent, and Landing

NASA

November, 2018

May 2018 Vandenburg

Earth

FM1 in Cubesat Lab 1 December 2015

-10

Mechanical Configuration: Deployed

Mechanical Configuration: Deployed

- Nov
 Complete assembly and test of FM2
- ♦ Dec Internal JPL FRR
- Dec-Jan Brief status to NASA HQ
- Late Feb Ship S/C to Tyvak for Dispenser I&T
- mid/end Feb KSC Reviews (MRR, Pre-integ, Pre-Install)
- Mar Installation on Launch Vehicle (VAFB)
- 5 May Insight Launch period open

